ООО «Научно-производственное предприятие Р.О.С.КОМТЕХ»

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММА ПОВЫШЕНИЯ КВАЛИФИКАЦИИ «СИСТЕМНОЕ АДМИНИСТРИРОВАНИЕ» (нормативный срок обучения 72 час.)

СОДЕРЖАНИЕ ПРОГРАММЫ

N₂	Наименование раздела программы	Стр.
1	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
2	ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ	4
3	КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК	6
4	УЧЕБНЫЙ ПЛАН	6
5	СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ	7
6	УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ	13
7	ФОРМЫ АТТЕСТАЦИИ	15
8	ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	17
9	МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ	19

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная профессиональная программа повышения квалификации «Системное администрирование» (далее - программа) разработана в соответствии с требованиями:

- Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в РФ»,
- Приказа Минобрнауки России от 01.07.2013 № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам».

Программа разработана на основе профессионального стандарта «Системный администратор информационно-коммуникационных систем», утв. приказом Министерства труда и социальной защиты РФ от 29 сентября 2020 г. N_{\odot} 680н.

Программа по виду образования – дополнительное образование, подвиддополнительное профессиональное образование, вид программы- повышение квалификации.

Цель реализации программы является совершенствование следующих профессиональных компетенций: Администрирование IP- сетей с использованием сетевого оборудования Cisco Systems.

Требования к слушателям (категории слушателей): к освоению дополнительной профессиональной программы допускаются лица, имеющие высшее профессиональное образование.

Курс предназначен для инженеров поддержки, сетевых инженеров, технических специалистов и сетевых администраторов, занятых внедрением и поддержкой малых и средних сетей предприятий, построенных с использованием оборудования Cisco, а также поиском и устранением неисправностей в этих сетях.

Общая трудоемкость программы - 72 академических часа за весь период обучения.

Форма обучения – очная.

Итоговый документ- удостоверение о повышении квалификации.

Обучающиеся, освоившие дополнительную профессиональную программу повышения квалификации в полном объеме и прошедшие итоговую аттестацию, получают удостоверение о повышении квалификации установленного образца.

Лицам, не прошедшим итоговой аттестации или получившим на итоговой аттестации неудовлетворительные результаты, а также лица освоившим часть дополнительной профессиональной программы и (или) отчисленным из организации, выдается справка об обучении или о периоде обучения по образцу, самостоятельно устанавливаемому организацией.

Документ о квалификации выдается на бланке, образец которого самостоятельно устанавливается организацией.

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Наименование вида профессиональной деятельности - Администрирование информационно-коммуникационных (инфокоммуникационных) систем.

Основная цель вида профессиональной деятельности - Обеспечение требуемого качественного бесперебойного режима работы инфокоммуникационной системы.

Обобщенные трудовые функции: Обслуживание сетевых устройств информационно-коммуникационной системы.

Данная программа повышения квалификации является условием совершенствования трудовых функций:

- «Выполнение работ по выявлению и устранению сложных инцидентов, возникающих на сетевых устройствах информационно-коммуникационных систем» (С/01.6),
- «Проведение анализа и выявление основных причин сложных проблем, возникающих на сетевых устройствах информационно-коммуникационных систем» (С/02.6),
- «Выполнение обновления программного обеспечения сетевых устройств информационно-коммуникационных систем» (С/05.6) в соответствии с профессиональным стандартом «Системный администратор информационно-коммуникационных систем».
- В результате освоения программы слушатель должен приобрести следующие знания, умения и практические навыки, необходимые для качественного изменения указанных компетенций:

Слушатель должен иметь практический опыт:

- использования консольного подключения к сетевому устройству с целью диагностики и настройки устройства;
- использования режима глобального конфигурирования командной строки Cisco IOS для настройки глобальных параметров сетевых устройств Cisco Systems;
- использования интерфейса командной строки Cisco IOS для настройки параметров интерфейсов сетевых устройств Cisco Systems;
- использования командной строки Cisco IOS для настройки протоколов коммутации и маршрутизации;
- использования утилит командной строки Cisco IOS для поиска и локализации неисправности в корпоративной сети;
- использования интерфейса командной строки Cisco IOS для настройки параметров безопасности сетевых устройств Cisco Systems и сетевых протоколов.

Слушатель должен уметь:

- конфигурировать, проверять правильность настройки сетевого оборудования;
- выполнять поиск/устранение неисправностей в работе оборудования Cisco;
 - расширять локальную сеть с использованием нескольких коммутаторов;

- настраивать локальные сети с избыточными топологиями, используя протоколы Spanning Tree, Ether-Channel, VRRP, HSRP;
- описывать концепцию построения маршрутизируемой сети среднего размера;
 - настраивать протоколы динамической маршрутизации OSPF и EIGRP;
- определять протоколы и технологии подключения к глобальной сети, исходя из потребностей предприятия;
 - понимать технологии VPN и конфигурировать GRE-туннели;
 - управлять устройствами Cisco и лицензиями.

Слушатель должен знать:

- эталонную модель взаимодействия открытых систем ISO OSI, принцип разделения функций по передаче пользовательской информации на независимые логические уровни, сопрягаемые стандартными интерфейсами.
- коммутацию фреймов Ethernet, принципы функционирования коммутаторов, как устройств второго уровня модели OSI.
- маршрутизацию пакетов IP, принципы функционирования маршрутизаторов, процесса доставки IP-пакетов до адресата.
- безопасность сетевых устройств, принципы информационной защиты сетевых устройств и протоколов, используемых в современных сетях на протоколе IP.
- архитектуру корпоративных сетей, функции устройств на уровне доступа, агрегации и ядра корпоративной сети.
 - основные понятия сетевых технологий;
 - типы адресации в сетях;
 - процесса доставки пакетов между узлами сети;
 - базовые команды конфигурации маршрутизаторов и коммутаторов
 - концепцию применения маршрутизации в сетях среднего размера;
 - проблемы использования маршрутизаторов при построении сети;
- определять протоколы и технологии подключения к глобальной сети, исходя из потребностей предприятия;
- особенности и работу статической и динамической маршрутизации, включающей протоколы EIGRP, OSPF;
 - технологии VPN.

3.КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК*

Образовательная деятельность обучающихся предусматривает следующие виды учебных занятий и учебных работ: теоретические, практические и самостоятельные занятия, консультации, выполнение промежуточной и итоговой аттестации определенные учебным планом.

Комплектование учебных групп осуществляется в течении всего календарного года. Начало обучения по мере комплектования учебных групп, или в индивидуальном формате. Нормативный срок (трудоемкость) обучения: 72 часа.

Режим занятий: более 8 не академических часов день. Предусматривается возможность обучения по индивидуальному учебному плану (графику обучения) в пределах осваиваемой дополнительной профессиональной программы повышения квалификации. Рекомендуемая продолжительность обучения – 9 раб. дней. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут, перерыв от 10 мин.

N₂	Наименование модуля, темы	Всего	Период обучения
пп.		часов	
1.	Модуль 1. Использование	70	1 -9 день обучения
	сетевого оборудования Cisco		
2.	Итоговая аттестация	2	9 день обучения
			-
ИТОГО		72	

^{*} Календарный учебный график конкретизируется в расписании учебных занятий на базе учебного центра

4.УЧЕБНЫЙ ПЛАН

N₂	Наименование	Всего	T3	ПЗ	CP	Вид	Форма
пп.	модуля, темы	часов				контроля	контроля
1.	Модуль 1.	70	24	28	18	Промежут	Зачет
	Использование					очный	
	сетевого					контроль	
	оборудования						
	Cisco						
2.	Итоговая	2	-	2	_	Итоговый	Экзамен
	аттестация					контроль	
ИТОГО		72	22	28	22		

ТЗ - теоретические занятия, ПЗ – практические занятия ТК – текущий контроль, СР- самостоятельная работа слушателя

5. РАБОЧИЕ ПРОГРАММЫ УЧЕБНЫХ МОДУЛЕЙ

5.1. Рабочая программа учебного модуля «Использование сетевого оборудования Cisco»

Учебно-тематический план учебного модуля «Использование сетевого оборудования Cisco»

N₂	Наименование модуля,	Всего	Т3	ПЗ	CP	Форма
пп. 1.	темы Модуль 1. Использование	часов 70	24	28	18	контроля Промежут
	сетевого оборудования					очный
	Cisco					контроль
1.1.	Внедрение масштабируемых сетей среднего размера	20	6	10	4	TK
1.2.	Устранение базовых неисправностей работы сети	8	4	2	2	TK
1.3.	Внедрение динамической маршрутизации на основе протокола EIGRP	8	4	2	2	TK
1.4.	Внедрение масштабируемого решения на основе протокола OSPF	10	4	4	2	TK
1.5.	Глобальные сети (WAN)	12	4	4	4	TK
1.6.	Управление сетевыми устройствами	10	2	4	4	TK
1.7.	Промежуточная аттестация	2	-	2	-	Зачет

Содержание учебного модуля «Использование сетевого оборудования Cisco»

Тема 1.1. Внедрение масштабируемых сетей средних размеров *Теоретические занятия:*

Внедрение VLAN-ов и транков. Введение в виртуальные локальные сети, стандарт 802.1Q, формат тега VLAN, транковые соединения. Построение коммутируемых топологий с избыточностью. Негативные эффекты от широковещательных петель в коммутируемых топологиях, протокол Spanning Tree - описание, функционирование, настройка.

Функции PortFast и BPDU Guard. Дополнительные стабилизирующие функции для протокола STP - PortFast и BPDU Guard. Технология Link Aggregation. Принципы объединения параллельных физический соединений в одно логическое с увеличенной суммарной скоростью передачи. Маршрутизация между VLAN-ами. Схемы маршрутизации между VLAN-ами.

Протоколы избыточности шлюза по умолчанию. Схемы обеспечения отказоустойчивости шлюза по умолчанию. Настройка сервера DHCP на маршрутизаторе Cisco. Изучение реализации функционала сервера DHCP на маршрутизаторе Cisco.

Практические занятия:

Лабораторная работа 1: Конфигурирование VLAN-ов и транков. Практическая работа по конфигурированию VLAN-ов и транковых соединений.

Лабораторная работа 2: Устранение неполадок VLAN-ов и транковых соединений. Практическая работа по поиску, локализации и устранению ошибок в конфигурации VLAN-ов и транковых соединений.

Лабораторная работа 3: Устранение неполадок VLAN-ов и транковых соединений. Практическая работа по поиску, локализации и устранению ошибок в конфигурации VLAN-ов и транковых соединений.

Лабораторная работа 4: Конфигурирование корневого коммутатора и анализ топологии STP. Практическая работа по конфигурированию протокола STP и проверка сложившейся топологии активных коммутируемых соединений.

Лабораторная работа 5: Устранение неполадок при использовании протокола STP. Практическая работа по поиску, локализации и устранению неисправностей при использовании протокола STP.

Лабораторная работа 6: Построение избыточных коммутируемых топологий. Практическая работа на закрепление материала по протоколу STP.

Лабораторная работа 7: Конфигурирование и проверка функции EtherChannel. Практическая работа по конфигурированию и проверке функции EtherChannel.

Лабораторная работа 8: Повышение избыточности коммутируемых топологий посредством внедрения EtherChannel. Практическая работа по конфигурированию и проверке настроек EtherChannel на коммутаторах Cisco.

Лабораторная работа 9: Конфигурирование одноплечевой схемы маршрутизации между VLAN-ами на маршрутизаторе. Практическая работа по конфигурированию одноплечевой схемы маршрутизации между VLAN-ами на маршрутизаторе Cisco.

Лабораторная работа 10: Конфигурирование и проверка HSRP. Практическая работа по настройке и проверке конфигурации и работы протокола Hot Standby Router Protocol.

Самостоятельная работа слушателя:

- 1. Устранение неполадок в протоколе HSRP. Практическая работа по поиску и устранению неисправностей при использовании протокола HSRP.
- 2. Внедрение и устранение неполадок HSRP. Практическая работа по настройке, контролю работы и устранению неполадок в протоколе HSRP.
- 3. Конфигурирование маршрутизатора Cisco в качестве сервера DHCP. Практическая работа по конфигурированию маршрутизатора Cisco в качестве сервера DHCP.

4. Устранение неполадок с DHCP. Практическая работа по поиску и устранению неполадок при использовании сервера DHCP на маршрутизаторе Cisco.

Тема 1.2. Устранение базовых неисправностей работы сети *Теоретические занятия:*

Использование инструментов траблшутинга. Практическая работа на использование инструментов командной строки для поиска и локализации неисправностей в сетях - утилиты ping, traceroute, nslookup.

Устранение неполадок связности в сети на протоколе IPv6. Подходы к поиску, локализации и устранению неполадок связности в сетях на протоколе IPv6.

Практические занятия:

Лабораторная работа 1: Конфигурирование и проверка расширенных списков контроля доступа. Практическая работа по конфигурированию и проверке расширенных списков контроля доступа.

Лабораторная работа 2: Устранение неполадок связности IPv4. Содержание темы: Практическая работа по устранению неполадок связности в сетях на протоколе IPv4.

Самостоятельная работа слушателя:

- 1. Конфигурирование и проверка расширенных списков ACL для IPv6. Практическая работа по конфигурированию и проверке расширенных списков ACL для IPv6.
- 2. Устранение неполадок связности в сетях IPv6. Практическая работа по устранению неполадок связности в сетях IPv6.

Tema 1.3. Внедрение динамической маршрутизации на основе протокола EIGRP

Теоретические занятия:

Принципы работы протокола EIGRP. Рассматриваются основы функционирования протокола EIGRP, расчет и пересчет оптимальных маршрутов, команды конфигурирования протокола EIGRP на маршрутизаторах Cisco. Внедрение EIGRP для сетей IPv6. Рассматривается работа и принципы конфигурирования протокола EIGRP для сетей на протоколе IPv6. Устранение неполадок маршрутизации в сетях с протоколом EIGRP. Теоретические основы устранения неполадок маршрутизации при использовании EIGRP.

Практические занятия:

Лабораторная работа 1: Конфигурирование и проверка настроек протокола EIGRP. Практическая работа по конфигурированию и проверке настроек протокола EIGRP на маршрутизаторах Cisco.

Лабораторная работа 2: Конфигурирование и проверка настроек протокола EIGRP для IPv6. Практическая работа по конфигурированию и проверке настроек протокола EIGRP для IPv6.

Самостоятельная работа слушателя:

- 1. Устранение неполадок протокола EIGRP. Практическая работа по устранению неполадок протокола EIGRP.
 - 2. Внедрение и устранение неполадок в ІР сетях средних размеров.

Тема 1.4. Внедрение масштабируемого решения на основе протокола OSPF

Теоретические занятия:

Обзор протокола OSPF. Рассматриваются теоретические основы работы топологических протоколов маршрутизации в целом и протокола OSPF как одного из представителей этого класса, формат служебных пакетов OSPF, установление маршрутной смежности маршрутизаторов OSPF, анонсы LSA.

Внедрение мультизонной конфигурации OSPF. Рассматривается архитектура домена маршрутизации OSPF с разбиением на зоны.

Введение в OSPFv3. Рассматриваются основы работы протокола OSPF версии 3 для маршрутизации в сетях на IPv6.

Устранение неполадок многозонной конфигурации OSPF. Рассматриваются варианты типичных отказов сети многозонной В C конфигурацией протокла OSPF, способы локализации проблем ИХ последующего устранения.

Практические занятия:

Лабораторная работа 1: Конфигурирование и проверка протокола OSPF. Практическая работа по конфигурированию и проверке настроек протокола OSPF.

Лабораторная работа 2: Конфигурирование и проверка OSPF с несколькими зонами. Практическая работа по конфигурированию и проверке работы протокола OSPF с несколькими топологическими зонами.

Лабораторная работа 3: Конфигурирование и проверка OSPF с несколькими зонами. Практическая работа по конфигурированию и проверке работы протокола OSPF с несколькими топологическими зонами.

Лабораторная работа 4: Конфигурирование и проверка настроек протокола OSPFv3. Практическая работа по конфигурированию и проверке настроек протокола OSPFv3.

Лабораторная работа 5: Конфигурирование и проверка настроек протокола OSPFv3. Практическая работа по конфигурированию и проверке настроек протокола OSPFv3.

Самостоятельная работа слушателя:

- 1. Устранение неполадок многозонной конфигурации OSPF. Практическая работа по устранению неполадок многозонной конфигурации OSPF.
- 2. Устранение неполадок многозонной конфигурации OSPF. Практическая работа по устранению неполадок многозонной конфигурации OSPF.

Тема 1.5 Глобальные сети (WAN) *Теоретические занятия:*

Введение в технологии глобальных сетей. Содержание темы: Рассматриваются технологии, используемые в глобальных сетях связи физический транспорт, типы инкапсуляций, типы интерфейсов для подключения к глобальным сетям связи. Протоколы соединений «точка-точка».

Рассматриваются протоколы HDLC, PPP, приводятся примеры их использования при подключении к оборудованию глобальных сетей связи.

Введение в Overlay-сети. Рассматриваются принципы организации связи офисов через сеть Интернет, даются основы организации виртуальных частных сетей. Туннели с инкапсуляцией GRE. Рассматривается обобщенная маршрутная инкапсуляция пакетов IP - формат, требования по конфигурации маршрутизации через туннель GRE. Подключение корпоративной сети по протоколу BGP. Даются основы функционирования и требования к маршрутизации по протоколу BGP, типы сообщений протокола BGP, типы отношений пиринга, схемы подключения офисов к сети Интернет с использованием протокола BGP.

Практические занятия:

Лабораторная работа 1: Конфигурирование интерфейсов Serial на маршрутизаторах Cisco. Практическая работа по конфигурированию интерфейсов Serial на маршрутизаторах Cisco.

Лабораторная работа 2: Конфигурирование и проверка настройки Multi-Link PPP. Практическая работа по конфигурированию и проверке настройки агрегированных соединений "точка-точка" Multi-Link PPP.

Лабораторная работа 3: Конфигурирование и проверка клиента PPPoE. Практическая работа по конфигурированию и проверке работы клиента PPPoE - соединение "точка-точка" поверх сети Ethernet.

Лабораторная работа 4: Конфигурирование соединений "точка-точка" поверх глобальных сетей связи. Практическая работа по конфигурированию соединений "точка-точка" поверх глобальных сетей связи.

Самостоятельная работа слушателя:

- 1. Конфигурирование и проверка туннелей GRE. Практическая работа по конфигурированию и проверке туннелей GRE.
- 2. Конфигурирование и проверка туннелей GRE. Самостоятельная работа по конфигурированию и проверке туннелей GRE.
- 3. Конфигурирование и проверка настроек одноканального eBGP подключения к сети провайдера Интернет. Практическая работа по конфигурированию и проверке настроек одноканального eBGP подключения к сети провайдера Интернет-доступа.
- 4. Внедрение одноканального eBGP подключения к сети провайдера Интернет. Практическая работа по конфигурированию и проверке настроек одноканального eBGP подключения к сети провайдера Интернет-доступа.

Тема 1.6 Управление сетевыми устройствами *Теоретические занятия:*

Защита административного доступа к сетевому устройству. Рассматриваются способы защиты административного доступа к сетевым

устройствам. Защита сетевых протоколов. Рассматриваются механизмы защиты и стабилизации функционирования сетевых протоколов, работающих на сетевом устройстве. Журналирование системных событий. Рассматривается системное журналирование по протоколу syslog. Управление конфигурацией и ПО сетевых устройств Cisco. Рассматриваются принципы работы с конфигурацией сетевых устройств Cisco - running-config, startup-config, резервное копирование конфигураций. Лицензирование. Рассматривается вопрос установки и управления лицензиями на устройствах Cisco. Продвинутые механизмы безопасности. Рассматриваются механизмы защиты коммутируемых сетей - DHCP Snooping, Dynamic ARP Inspection, IP Source Guard. Введение в SNMP. Рассматривается протокол SNMP - версии, особенности каждой версии протокола, настройки.

Введение в интеллектуальные сети. Рассматривается подход Application-Centric Infrastructure и теоретические основы программно-определяемых сетей. Введение в качество обслуживания QoS. Рассматриваются теоретические основы управления пакетными очередями и конкретные реализации механизмов управления в сетевых устройствах Cisco, вводится понятие конвергентных сетей.

Практические занятия:

Лабораторная работа 1: Настройка защищенной начальной конфигурации. Практическая работа по настройке базовой защиты конфигурации сетевого устройства.

Лабораторная работа 2: Ограничение доступа в консоль сетевого устройств. Практическая работа по настройке ограничения доступа в локальную и удаленную консоли сетевого устройств.

Лабораторная работа 3: Конфигурирование и проверка функции Port Security. Практическая работа по конфигурированию функции Port Security на коммутаторах Cisco.

Лабораторная работа 4: Конфигурирование и проверка NTP. Практическая работа по конфигурированию и проверке настроек протокола синхронизации времени NTP на устройствах Cisco.

Самостоятельная работа слушателя:

- 1. Настройка механизмов безопасности на сетевых устройствах Cisco. Практическая работа по настройке защиты доступа в устройства Cisco и протоколов, исполняющихся на нем.
- 2. Конфигурирование syslog. Практическая работа по конфигурированию системного журналирования на устройствах Cisco.
- 3. Конфигурирование внешней аутентификации по протоколам RADIUS и TACACS+. Практическая работа по конфигурированию внешней аутентификации по протоколам RADIUS и TACACS+ при подключении к сетевым устройствам Cisco.
- 4. Конфигурирование протокола SNMP. Практическая работа по конфигурированию протокола SNMP на устройствах Cisco.

Промежуточная аттестация. Зачет.

6. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

6.1. Организационно-педагогические условия реализации программы

Образовательная организация осуществляет обучение по дополнительной профессиональной программе на основе договора об образовании, заключаемого со слушателем и (или) с физическим или юридическим лицом, обязующимся оплатить обучение лица, зачисляемого на обучение, либо за счет бюджетных ассигнований федерального бюджета, бюджетов субъектов Российской Федерации.

Содержание дополнительного профессионального образования определяется образовательной программой, разработанной и утвержденной образовательной организацией, с учетом потребностей лица, организации, по инициативе которых осуществляется дополнительное профессиональное образование.

Организационно-педагогические условия реализации образовательной программы обеспечивают ее реализацию в полном объеме, качество подготовки обучающихся, соответствие применяемых форм, средств, методов обучения способностям, интересам и потребностям обучающихся.

Образовательная деятельность обучающихся предусматривает следующие виды учебных занятий и учебных работ: лекции, практические занятия, самостоятельную работу определенные учебным планом.

Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

Форма обучения — очная. Допускается сочетание различных форм получения образования и форм обучения.

Форма организации образовательной деятельности обучающихся – групповая, индивидуальная.

Форма организации аудиторных занятии — учебное занятие, практическая работа. Чаще всего используется фронтальная работа. Она предполагает одновременное выполнение общих заданий всеми обучающимися для достижения ими общей познавательной задачи.

Наполняемость учебной группы – до 10 человек.

Объем нагрузки в неделю не более 40 часов.

6.2. Требования к материально-техническому обеспечению реализации программы

Учебные помещения представляют собой оборудованные учебные аудитории для проведения занятий всех видов, предусмотренных образовательной программой: в наличии имеются учебные столы, учебные стулья, проектор, учебная доска, компьютеры.

Для проведения практических занятий: Компьютеры с необходимым программным обеспечением и выходом в Интернет, мультимедийный проектор, экран, доска.

RDP Сервер с настроенным удаленным доступом Intel i7 32GB RAM 1 Tb HDD.

Виртуализация на основе гипервизора HyperV в составе ОС Windows Server 2016/2019.

Клиентское рабочее место (слушателя): Компьютер под управление ОС Windows 7/8/10, веб-браузер Google Chrome.

6.3. Требования к кадровому обеспечению образовательного процесса

Реализация дополнительной профессиональной программы повышения квалификации обеспечивается научно-педагогическими работниками организации, а также лицами, привлекаемыми к реализации программы на условиях гражданско-правового договора.

Квалификация руководящих научно-педагогических работников организации квалификационным соответствует характеристикам, в Едином квалификационном справочнике установленным должностей руководителей, служащих, раздел «Квалификационные специалистов И характеристики должностей руководителей И специалистов профессионального и дополнительного профессионального образования», утвержденном приказом Министерства здравоохранения и социального развития Российской Федерации от 11 января 2011 г. №1н (зарегистрирован Министерством юстиции Российской Федерации 23 марта 2011 регистрационный №20237).

6.4. Информационно-методическое обеспечение реализации программы

Основная учебная литература:

- 1. Полный справочник по Cisco. Брайан Хилл. Вильямс.
- 2. Уэндел Оддом Cisco ICND1/CCNA 200-101. Официальное руководство. Вильямс, 2015, 903 с.
- 3. А.М. Кенин / Самоучитель системного администратора / Санкт-Петербург 2019 г. 608 стр.
 - 4. Таненбаум Э. / Компьютерные сети / СПб.: Питер, 2012. 960 стр.

Дополнительная литература:

- 1. Виктор Олифер Компьютерные сети (4-е издание). Учебное пособие. Питер.
 - 2. Тодд Леммл CCNA. Учебное руководство. Лори.
- 3. Oracle 8. Администрирование баз данных. Учебное пособие. М.: Oracle, 2020. 1000 с.
 - 4. Сэм Хелеби Cisco. Принципы маршрутизации в Internet. Вильямс.
- 5. С.И. Макаренко / Информационная безопасность: учебное пособие. / Ставрополь: СФ МГГУ им. М. А. Шолохова, 2009 г. 372 стр.
 - 6. М.Н. Головчинер / Базы данных / Томск 2009 г. 129 стр.
- 7. В.В. Михайлов / Администрирование информационных систем / Белгород 2017 г. 113 стр.
- 8. Тарасов С. В. / СУБД для программиста. Базы данных изнутри. М.: СОЛОН-Пресс, 2015 г. 320 стр.

7. ФОРМЫ АТТЕСТАЦИИ

С целью контроля и оценки результатов подготовки и учета индивидуальных образовательных достижений, обучающихся применяются: текущий, промежуточный и итоговый контроль.

7.1. Текущий контроль

Текущий контроль осуществляется непосредственно в ходе проведения занятия. Основная цель этого контроля – получить «обратную связь», провести анализ хода формирования знаний и умений.

Результат текущего контроля выявляется в ходе обсуждения основных положений лекционно-практического занятия, вопросов преподавателя группе, обсуждения ответов, разворачивания диалога, решения задач, выполнения заданий и т.п.

Текущий контроль дает возможность преподавателю своевременно выявить недостатки, установить их причины скорректировать знания и умения слушателей.

Не относится к промежуточной аттестации, не формализуется в оценочных материалах, результаты не оцениваются.

7.2. Промежуточная аттестация

Промежуточная аттестация — это установление уровня достижения результатов освоения учебных модулей предусмотренных образовательной программой.

Форма промежуточной аттестации – зачет (устный опрос).

7.3. Итоговая аттестация

Итоговая аттестация направлена: на демонстрацию и контроль трудовых функций:

- «Выполнение работ по выявлению и устранению сложных инцидентов, возникающих на сетевых устройствах информационно-коммуникационных систем» (С/01.6),
- «Проведение анализа и выявление основных причин сложных проблем, возникающих на сетевых устройствах информационно-коммуникационных систем» (С/02.6),
- «Выполнение обновления программного обеспечения сетевых устройств информационно-коммуникационных систем» (С/05.6)
- в соответствии с профессиональным стандартом «Системный администратор информационно-коммуникационных систем» на комплексную оценку компетенции: «Администрирование IP- сетей с использованием сетевого оборудования Cisco Systems».

Итоговая аттестация проводится в форме экзамена в виде устного опроса (5 вопросов).

На итоговую аттестацию отводится 2 час.

К итоговой аттестации допускаются слушатели, успешно выполнившие все элементы учебного плана и проделавшие все лабораторные работы, предусмотренные программой.

Итоговая аттестация не может быть заменена оценкой уровня знаний на основе промежуточной аттестации обучающихся.

Обучающиеся, освоившие учебную программу и прошедшие итоговую аттестацию, получают **удостоверение о повышении квалификации** установленного образца об обучении.

Лицам, не прошедшим итоговой аттестации или получившим на итоговой аттестации неудовлетворительные результаты, а также лицам, освоившим часть программы обучения и (или) отчисленным из учебного центра, выдается справка об обучении или о периоде обучения по образцу, самостоятельно устанавливаемому учебным центром.

Индивидуальный учет результатов освоения обучающимися образовательных программ, а также хранение в архивах информации об этих результатах осуществляются образовательной организацией на бумажных и (или) электронных носителях.

8.ФОНД ОЦЕНОНЫХ СРЕДСТВ

Критерии оценивания устного опроса:

Оценка «зачтено» выставляется, если ответ логически и лексически грамотно изложенный, содержательный и аргументированный ответ, подкрепленный знанием литературы и источников по теме вопроса, умение отвечать на дополнительно заданные вопросы; незначительное нарушение логики изложения материала, допущение не более одной ошибки в содержании задания, а также не более одной неточности при аргументации своей позиции.

Оценка «незачтено» выставляется, если в ответе допущено существенное нарушение логики изложения материала, допущение не более двух ошибок в содержании вопроса, а также не более двух неточностей при аргументации своей позиции, неправильные ответы на дополнительно заданные вопросы; существенное нарушение логики изложения материала, отсутствие ответов на дополнительно заданные вопросы.

Варианты вопросов для промежуточной аттестации

- 1. В каком виде информация хранится в компьютере?
- 2. К какому уровню эталонной модели OSI относится сетевой адаптер?
- 3. Какое преимущество имеет использование в сетях оптоволоконного кабеля?
 - 4. Какой номер имеет канальный уровень в эталонной модели OSI?
 - 5. Для чего используются межсетевые устройства?
 - 6. Какая из проблем может быть легко устранена с помощью повторителя?
- 7. Какое сетевое устройство способно решить проблему чрезмерного широковещательного трафика?
 - 8. Какой недостаток имеет использование концентратора?
- 9. Что происходит, если мост обнаруживает, что адрес назначения, содержащийся в пакете данных, находится в том же сегменте сети, что и источник?
 - 10. Чем глобальные сети отличаются от локальных?
- 11. Если сеть класса С разделена на подсети и имеет маску 255.255.255.192, то какое максимальное количество доступных подсетей можно создать?
 - 12. Какую роль в ІР-адресе играет номер хост-машины?
 - 13. Зачем осуществляются RARP-запросы?
 - 14. Что содержится в RARP-запросе?
- 15. Какое описание пяти этапов преобразования данных в процессе инкапсуляции при отправке почтового сообщения одним компьютером другому является правильным?
- 16. Какой уровень эталонной модели OSI обеспечивает сетевые услуги пользовательским прикладным программам?

- 17. При отправке почтового сообщения с компьютера A на компьютер Б данные необходимо инкапсулировать. Что происходит после преобразования алфавитно-цифровых символов в данные?
 - 18. Для чего нужны номера портов?

Варианты вопросов для итоговой аттестации

- 1. Требуется объединить 5 офисов, находящихся в пределах города, в единую сеть таким образом, чтобы, где это возможно, топология была полносвязной. Какое оборудование необходимо задействовать для решения поставленной задачи?
- 2. Что означает буква S перед записью маршрута после выполнения команды show ip route на маршрутизаторе?
- 3. Требуется объединить 2 цеха и здание управления завода в единую корпоративную сеть. Каждый их цехов находится на расстоянии 350 м от здания управления, пропускная способность должна составлять не менее 100 Мбит/сек. Какая из технологий позволит решить поставленную задачу?
- 4. Какой из способов позволит оперативно отслеживать трафик на нескольких портах коммутатора Cisco Catalyst 2950 одновременно?
- 5. Какой (какие) файл (файлы) можно обнаружить в энергонезависимой памяти?
- 6. Укажите правильную последовательность шагов выполнения процесса запуска системы маршрутизаторов Cisco.
 - 7. Как называются две части заголовка кадра?
 - 8. Какова цель ревизии средств защиты сети?
- 9. Какие два режима доступа к командам маршрутизатора существуют в маршрутизаторах Cisco?
- 10. Какой из приведенных ниже символов свидетельствует о том, что данная командная строка является строкой привилегированного режима интерфейса пользователя маршрутизаторов Cisco?
- 11. Какой из режимов предоставляет доступ к списку общеупотребительных команд, если при работе с интерфейсом пользователя маршрутизаторов Cisco ввести с клавиатуры символ знак вопроса ("?")?
- 12. Какой режим используется при внесении изменений в конфигурацию маршрутизаторов Cisco?
- 13. Нажатие каких клавиш при работе с интерфейсом пользователя маршрутизаторов Cisco приводит к автоматическому повторению ввода предыдущей команды?
- 14. Что означает подсказка More , появляющаяся внизу экрана интерфейса пользователя маршрутизаторов Cisco?
- 15. Что означает, когда в интерфейсе пользователя маршрутизатора Cisco появляется символ "больше чем" (>)?
 - 16. Что произойдет, если набрать команду show? в командной строке?
- 17. Что произойдет, если при работе с интерфейсом пользователя маршрутизаторов Cisco ввести символ вопросительного знака?

- 18. Что произойдет, если при работе с интерфейсом пользователя маршрутизаторов Cisco нажать клавишу со стрелкой вверх?
 - 19. Из-за чего возникает маршрутизация по кругу?
- 20. Какие две части адреса используются маршрутизатором для передачи трафика по сети?

9. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Одним из важнейших условий реализации программы является активная позиция каждого слушателя, его инициатива, осмысление собственного опыта.

В процессе изучения программы применяются как традиционные (объяснительно-иллюстративное, репродуктивно воспроизводящее, предметно-ориентированное обучение), так и инновационные технологии обучения.

Для достижения целей изучения программы используются активные (лекции, практическая работа с организацией совместной деятельности) и интерактивные формы проведения занятий (интерактивные лекции, взаимное рецензирование).

Предусмотрено широкое использование активных и интерактивных форм занятий (интерактивных лекций с использованием электронных образовательных ресурсов, дискуссий, разбора конкретных ресурсов, документов, ситуаций).

Процесс обучения в рамках реализации программы осуществляется с позиций обучения действием, данный курс дает знания и умения, а навыки отрабатываются на практике.

Использование приемов технологии проблемного обучения (создание проблемных ситуаций, активная самостоятельная деятельность) способствуют формированию у слушателей способности самостоятельного усвоения новых понятий и умения анализировать определенные действия.

Использование в рамках курсов повышения квалификации групповых технологий обучения позволяет решать задачи организации совместных действий, ведущих к активизации познавательных процессов; распределения начальных действий и операций; коммуникации, общения, без которых невозможны распределение, обмен и взаимопонимание и благодаря которым планируются адекватные задаче условия деятельности и выбор соответствующих способов действия.

Применение ИКТ-технологий обеспечивает использование возможностей образовательных ресурсов сети Интернет для выполнения предложенных в рамках курсов заданий, презентаций, создания качественных проектных продуктов.

В результате обращения к ИКТ-технологиям обучающиеся получают возможность доступа к актуальным (современным) публикациям различных научных изданий, в том числе знакомства с современными научными исследованиями по интересующим проблемам, обозначенным в рамках ДПП, формирования методического банка данных для последующего использования в своей практической деятельности.

Методические рекомендации для обеспечения самостоятельной работы обучающихся

Самостоятельная работа слушателей включает усвоение теоретического материала, подготовку к практическим занятиям, выполнение самостоятельных

заданий, в том числе домашние задания, изучение литературных источников, использование Internet-данных, изучение нормативно-правовой базы, подготовку к текущему контролю знаний, к промежуточной аттестации.

В рамках изучения программы могут быть предусмотрены встречи обучающихся с участием представителей российских и зарубежных компаний, государственных и общественных организаций и проведение мастер-классов экспертов.

Контроль за выполнением самостоятельной работы ведется в процессе изучения курса преподавателем на практических занятиях, а также при проверке индивидуальных заданий и письменных работ.

Управление самостоятельной работой слушателя

Формы управления самостоятельной работой:

- консультирование;
- проверка части выполненной работы;
- предложение списка рекомендованной литературы.

План самостоятельной работы: повторение материала, подготовка к практическим (семинарским) занятиям.